If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(216)^x=(1296)^-1/4*6^x-1
We move all terms to the left:
(216)^x-((1296)^-1/4*6^x-1)=0
Domain of the equation: 4*6^x-1)!=0We get rid of parentheses
x∈R
216^x+1/4*6^x+1-1296^=0
We multiply all the terms by the denominator
216^x*4*6^x+1*4*6^x-1296^*4*6^x+1=0
Wy multiply elements
5184x^2*6-31104x^2*6+24x*6+1=0
Wy multiply elements
31104x^2-186624x^2+144x+1=0
We add all the numbers together, and all the variables
-155520x^2+144x+1=0
a = -155520; b = 144; c = +1;
Δ = b2-4ac
Δ = 1442-4·(-155520)·1
Δ = 642816
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{642816}=\sqrt{20736*31}=\sqrt{20736}*\sqrt{31}=144\sqrt{31}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(144)-144\sqrt{31}}{2*-155520}=\frac{-144-144\sqrt{31}}{-311040} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(144)+144\sqrt{31}}{2*-155520}=\frac{-144+144\sqrt{31}}{-311040} $
| 2k=13+k-6 | | 3x=11.4 | | 2x2–4x–7=0 | | 2(p+1)-7(3p-2)=7(p-4) | | 7y+3=-21 | | (2111)x=(623)8 | | -0.000192x^2+0.02x=0 | | 48n+36=36n+30 | | 1x-3=1+7x | | -3y-7=11 | | 50÷2w+1=24 | | 7-3k=12 | | 1/x+4=8 | | 6x=12=12 | | 6x-1=-97 | | 45=3(p−62) | | -2x-6=-66 | | 10u+8=88 | | g+10=59 | | X+x*5/100=100 | | 308=10x-2 | | x=13=24 | | 31=d10 | | -72/t=8 | | +4x^2+4x+2x+2)(2x+3)=720 | | (2-7x)3=9 | | (7x+4)22/7=0 | | 1.25x=1+x | | (2x+1)(2x+2)(2x+3)=720 | | 4d+2d+3=14 | | 5/b-2=4/1+b | | 2/x+3/x=10 |